
Machine Learning in Physically-Based Simulations

CS 686 Project

Instructor: Kate Larson

Author: Egor Larionov (20263767)

University of Waterloo

December 9, 2013

Abstract

This project introduces the applications of artificial intelligence and machine learning to the
field of computer graphics, with an emphasis on physically based simulation. A non-exhaustive
overview of various machine learning methods is provided with examples. An introduction to
function approximation using artificial neural networks is provided. A 2D particle simulator is used
to illustrate the applicability of learning techniques in physically-based simulations. A Matlab
program is built to simulate 2D particles with an impulse based collision reaction function. An
artificial neural network is then trained to approximate this function, and the results are then
compared qualitatively and quantitatively.

1 Introduction

Artificial intelligence and machine learning has become a popular and important branch of computer
science especially over the past few decades. As computers became faster and more accessible (think
mobile devices and the internet), it is difficult to live a day in the modern age without interacting with
an artificially trained system. Many common services are supported by machine learning, including
automatic translation, voice recognition, object recognition and many more. Machine learning is
especially useful for solving ill-posed problems or when the nature of a problem is not well known.
For instance, simulating a physical phenomenon such as fire, smoke, water or even a falling leaf, is a
problem especially difficult to simulate due to the complexity of its computational model.

Simulation of natural phenomena can have many purposes. It may be essential to replicate a
physical phenomenon for scientific or engineering purposes such as creating an accurate model of
air flow for weather forecasting. On the other hand, physical phenomena play an important role in
computer graphics, where creating an aesthetically pleasing simulation is a priority over accuracy.
In this area, machine learning is very applicable, because we only want to approximate a physical
phenomena to a point where it is indistinguishable from the “real thing” to a human observer. In
some cases the approximation can be coarse (fire and smoke), while in others it must be more accurate
(walking, facial expressions), depending on human familiarity with the phenomena. We see the way
other people walk and talk every day, which enables us to detect the slightest flaw in a walking or
speech simulation. However explosions, fire and smoke are not common in our everyday life, so we
may be more easily fooled by an inaccurate graphical representation of these phenomena.

This paper will introduce a few contemporary learning problems, and indicate a few of their uses in
physically-based animation research. I will focus on a particular method for function learning called
artificial neural networks. To illustrate the applicability of neural networks, I will approximate an
impulse reaction function used in a simple 2D particle simulator, with the help of Matlab’s built-in
neural network simulator.

2 Machine Learning

Machine learning, a branch of artificial intelligence, is the study of methods that enable computers
to learn, and perform tasks without being explicitly programmed to do so. Machine learning meth-
ods are widely applied to problems computer graphics, many of which include: regression, function
approximation, manifold learning, learning based optimization and data-driven classification [1, 2.2].
We will focus on the first three of these methods, since they are more applicable to physical simulation
problems.

2.1 Regression

Suppose there is an unknown stochastic process that can be observed by some variable known to be
dependent on some k independent variables1. So the process can be described [3] by a function f such
that

y = f(x,p) + e

where y is the response (observed) variable, x ∈ Rk are the independent variables, e are the errors
(usually assumed to be normally distributed), and p ∈ Rm are some unknown parameters. We are
often interested in finding the relationship between the input and the output. So we may take some
M independent measurements (samples) of this process, A = {xi}Mi=1, and y = {yi}Mi=1, then use a

1There exist generalizations of regression to multidimensional dependent variable.

1

function that will mimic the behaviour of f :

f̃ : RM×k︸ ︷︷ ︸
sample
space

× Rm︸︷︷︸
parameter
space

→ RM ,

and find parameters p that will approximate f . Then f̃ may reproduce the process up to an appropriate
error margin as:

y = f̃(A,p) + e.

For instance we may throw a ball in the air and measure two changing variables: its height h and
the time of measurement t. Using a linear regression technique for simplicity2, we may assume that
the height of the ball depends linearly on t and t2. With a set of measurements A = [x1| . . . |xM]T ,
where xi = (ti, t

2
i)
T and y = (h1, . . . , hM)T (here T denotes transposition), it remains to find a set of

parameters p ∈ R2 such that

hi = p1ti + p2t
2
i + ei for all i ∈ {1,M}

where ei are minimized. In vector form we get

y =

 x1

...

xM

[p1

p2

]
+

 e1

...
eM

 = Ap + e = f̃(A,p) + e

where f̃(A,p) = Ap is given by the linear regression assumption.

2.2 Function Approximation

This problem is closely related to regression. As with regression problems, we try to find an approx-
imation to some unknown function, whose behaviour we can measure. The main difference is that
function approximation methods focus on trying to approximate arbitrarily complex functions numer-
ically, while regression attempts to fit a known simpler function to a set of data by finding the right
parameters. Usually regression techniques are applied to functions of stochastic nature, while function
approximation is used to match deterministic functions.

This time we will define the problem for functions with multidimensional outputs. Suppose we
would like to approximate some unknown function

f : Rm → Rn,

using a set of measurements of its inputs and outputs {(xi,yi)}Mi=1 where xi ∈ Rm and yi ∈ Rn. This
can be done by interpolating this set of measurements in a clever way. The differences in function
approximation methods include (dimensional) scalability, difficulty of implementation and rate of
convergence (how many samples are need to approximate a function within a small enough error).

There are many computational used techniques to solve regression and function approximation
problems. A few popular techniques are listed in [1]:

k-nearest neighbour: A form of instance-based learning [6, 20.4], that directly interpolates input-
output examples by estimating the probability density of each neighbourhood containing k neigh-
bours. This method is scalable to multiple dimensions and easy to implement, however it requires
lots of storage.

2Assuming our model is linear is not necessary, since there exist more general polynomial (e.g. [4]) or statistical
regression models (see [5] for details)

2

artificial neural networks: A computational model of a network of nodes resembling the neural
network in a brain. Each node i in the network is a multidimensional function, which outputs
a value between 0 and Wi (the weight at the given node) depending on how the “strength” the
weighted average of its inputs coming from other nodes. The weights of the network are adjusted
at each sample input, such that eventually the network approximates the target function. This
method works well for noisy inputs and is easy to implement, however it lacks in scalability and
can only approximate smooth functions. Artificial neural networks will be explored in detail in
a later section.

radial basis functions (RBF): A popular kind of probabilistic artificial neural network, which
trains (the means and variances of) Gaussian probability distributions that define the weights
at each node in the network.

2.3 Manifold Learning

Manifold learning can be seen as a generalization to function approximation. The assumption that
f : Rm → Rn is a well-defined function is lifted, and instead input-output examples used to learn f
are seen as points in RN (where N = n×m) that define a k-manifold where k < N .

Loosely speaking, a k-manifold M , is a subspace of RN such that for every point on p ∈ M there
exists a neighbourhood A ⊂M homeomorphic3 to an open subset V ⊂ Rk.

Intuitively, a 2-manifold in a 3D space is a smooth surface which looks planar when inspected closely
at a point. For instance the surface of the earth is (roughly) a sphere, however to us it appears flat
because we can only see a small portion of it at once.

One example of manifold learning in computer graphics is approximating a 3D surface with a
smooth closed surface. Often surfaces used in modelling 3D objects for visual purposes contain holes,
which can be automatically repaired with manifold learning algorithms [8].

Manifold learning is more generally referred to as nonlinear dimensionality reduction, and there
are many techniques available to solve this problem. A few include [1]:

principle component analysis (PCA): A popular statistical method that reduces dimensionality
of input data points linearly by projecting them onto a lower dimensional space. See [9] for
a thorough analysis of PCA. This method is numerically stable, however it does not work for
non-linear problems.

kernel PCA: Non-linear extension of PCA. This method is accurate, however naturally slower than
standard PCA.

self-organizing map (SOM): A kind of artificial neural network, that fits a discrete grid to a set
of unorganized data points. This method is fast and easy to implement, however it is not widely
applicable.

3Two open sets A ∈ RN and B ∈ Rk are homeomorphic if there exists a continuous bijection ϕ : A → B with a
continuous inverse, ϕ−1. See your favourite book on mathematical analysis [7] for details.

3

3 Modelling Physical Systems for Animation

Animation of physical systems often suffers from the sheer complexity of some physical models. In
addition, some systems are so visually complex that it is exceptionally difficult (or impossible) to
accurately model them by hand, as artists often create character animation. Thus it is truly a challenge
to design efficient and stable algorithms to perform physical simulation, while exposing intuitively
sensible parameters to the user.

Many of these problems can be relieved by machine learning. To create aesthetically pleasing ani-
mation, it is sufficient to merely approximate a physical system, thus avoiding the need for computing
an explicit physical model. It is usually more efficient to approximate a function than compute it
exactly. Furthermore machine learning methods can expose custom user-modifiable parameters that
are not necessarily linked to physical properties, which is sometimes more useful for artists. Finally,
machine learning solutions are often easier to implement than explicit physical simulators.

There are a variety of physically-based simulation problems involving deformable objects (e.g.
cloth, hair, pillows), stochastic systems (e.g. candle flame, falling leaf) and incompressible fluids
(e.g. explosions, water) as outlined in [1, 4.4]. All of these problems are computationally difficult
to solve, but can be effectively approximated with machine learning techniques. One particularly
popular example of a general method for solving physically-based problems, is an artificial neural
network method, used for function approximation, called theNeuroAnimator [2]. The NeuroAnimator
is designed to produce subsequent states of a physical system given a number of control inputs at every
time step. The output from each time step is fed into the network for the subsequent time step, along
with time dependent controls, and forces. This can be written as st+∆t = N (st,ut, ft), where N is the
neural network, st is the current state, ut are the controls, and ft are the forces acting on the system
at time t. The main advantages of this method is its performance and generality, however it suffers
from lack of scalability to multiple dimensions. Furthermore, neural networks can only approximate
smooth functions, so care must be taken when choosing functions to be approximated. Note that the
state alone has as many dimensions as there are degrees of freedom of the object being simulated.
This method uses the back-propagation learning algorithm, similar to the one used in Matlab, which
I will leverage in simulating a 2D particle collision system.

4 A 2D Particle Collision Simulator

A simple problem I explored was the simulation of moving particles in a box in two dimensions. All
particles are assumed to have equal mass and resemble balls (circles in 2D) of radius r. The containing
box has dimensions N ×N . There are M particles inside the box, initially at some random positions
{pi = (xi, yi)}Mi=1 and random velocities {vi = (vx, vy)i}Mi=1. At each consecutive simulation frame,
the particles are redrawn to be at new positions p′i = pi + vi with unchanged velocities, unless they
have collided with a wall or a neighbouring particle. All collisions are assumed to be perfectly elastic.
A particle at position (x, y) is collided with a wall if

x > N − r or x > r for right and left walls, or

y > N − r or y > r for top and bottom walls resp.

In a case of a wall collision, the velocity of the particle simply changes sign at the appropriate coor-
dinate. For instance if a particle with velocity (vx, vy) collides with the left or right wall, its velocity
changes to (−vx, vy).

4

4.1 Physical 2D Collision Model

Collisions between particles are slightly more complicated. However they can be easily expressed as a
function that takes the state of particles before collision to the state after collision. From a physical
perspective, a state of two particles can be fully described by a point in the 2D phase space before
and after a collision.

Given some stationary frame of reference, two particles with centres at positions p1 and p2 are
collided when ‖p1−p2‖2 < 2r, (where ‖·‖2 is the standard euclidean norm). The initial velocities of the
two particles are denoted by v1 and v2. After the collision, the particles will have velocities u1, and u2.
The collision reaction can be expressed as a function f : R8 → R4 such that (u1,u2) = f(p1,p2,v1,v2).
Finally, to insure that the particles do not remain in the state of collision at the next frame, each
particle should be displaced away from the other by adding (or subtracting) a vector b to (or from)
each particle, so the collision is really given by f : R8 → R6, where

(u1,u2,b) = f(p1,p2,v1,v2).

The goal of this example is to learn the function f . Note that f is a deterministic, well-defined
function, so a function approximation method is sufficient to learn f . I chose to generate an artificial
neural network to simulate this function.

In order to train the neural network, we need a set of samples. Ideally we would not need to
implement the physical model to train my neural network, and instead provide a segmented recording
of real colliding spheres (e.g. a game of billiards). However for the sake of simplicity I provided an
explicit collision function to train the neural network. This function will be used to determine the
error in the output of our neural network. The collision function is given by

u1 = v1 + (vr · n) n (4.1)

u2 = v2 − (vr · n) n (4.2)

b = r − 1
2‖p1 − p2‖ (4.3)

where r is the radius of each circular particle, vr = v2 − v1 is the relative velocity of the two par-
ticles, and n = (p2 − p1)/‖p2 − p1‖. Note that after collision, the particles are moved to positions
p′1 = p1 − b, and p′2 = p2 + b.

4.2 Feed-Forward Artificial Neural Network

Recall that an artificial neural network is composed of nodes (or units) connected by directed links.
Each node i computes an activation value, ai, and propagates it to the rest of the network through
output links, each having a weight Wj,i, where j is the index of the destination node. A node has the
following form:

5

where the activation function g takes a value near zero if the signal (weighted linear combination of
inputs given by the input function) is weak (negative), and 1 if the signal is strong (positive). This
means usually takes the form g(x) = 1/(1 + e−αx), where α ∈ (0,∞], and at α = ∞, g becomes the
threshold function4. The bias weight determines the location of the threshold (at which point g is 1

2 or
changes value in case α =∞). A feed-forward network contains no back links, meaning that one node
can not affect any of its ancestors. This type of network suits the problem at hand very well. The
initial input units ai to a neural network are the inputs to the function being approximated. Similarly
the output units represent the outputs of the function. Between the input and output layers in the
network, there may be an arbitrary number of hidden layers, with an arbitrary number of units in
each layer.

One major challenge in designing effective neural networks is determining the number of hidden
layers and hidden units to use. It has been shown [10] that for full generality, it is sufficient to have
two hidden layers in a feed-forward network. It has also been suggested that having two hidden layers
can be advantageous [11]. I train the neural network with various configurations, and analyze the
error in position and velocity.

4.3 Results

I trained and simulated the neural network on a particle simulator with an 256× 256 pixel grid with 5
particles of 20 pixel radii. The initial velocity of the particles was capped at 8 pixels per frame. Each
simulation contained 5000 frames.

Figure 4.1: A sample of 4 frames from the proposed simulation.

All simulations were run on the University of Waterloo undergraduate computing environment

4Note that if g is linear than the neural network becomes the linear regression technique.

6

using all available CPUs. I trained 18 different neural networks, with varying hidden layer structure
and training sets. The following errors were found in the velocity function in each neural network:

of units size of training set
Layer 1 Layer 2 76 324 672

5 5 2.377 (289) 1.357 (300) 1.273 (288)
10 5 1.199 (131) 0.3152 (314) 0.6532 (303)
10 10 4.558 (652) 0.2632 (275) 0.7738 (288)
20 15 8.271 (1509) 0.1559 (336) 0.08141 (412)

5 0 2.236 (317) 1.543 (278) 1.342 (271)
10 0 1.820 (383) 0.9019 (309) 0.407 (303)
20 0 2.140 (501) 0.1298 (341) 0.09193 (380)
25 0 - 0.1120 (336) 0.08796 (376)
35 0 - 0.1483 (347) 0.09733 (360)

Table 4.1: Average error in response velocity after collision over all encountered collisions, as computed by
ev = 1

k

∑k
t=1

1
2 (‖u1 −w1‖+ ‖u2 −w2‖), where wi are the post-collision velocities as computed by the explicit

model in (4.1) and (4.2), and k is the total number of collisions occurred (displayed in parentheses beside each
error).

of units size of training set
Layer 1 Layer 2 76 324 672

5 5 1.394 (289) 0.8881 (300) 0.7904 (288)
10 5 0.6596 (131) 0.9759 (314) 0.9372 (303)
10 10 2.6051 (652) 0.6147 (275) 0.6621 (288)
20 15 6.0223 (1509) 0.3126 (336) 0.3356 (412)

5 0 0.9082 (317) 0.7961 (278) 0.7882 (271)
10 0 1.115 (383) 0.7176 (309) 0.5354 (303)
20 0 3.310 (501) 0.3202 (341) 0.2936 (380)
25 0 - 0.3136 (336) 0.2200 (376)
35 0 - 0.3475 (347) 0.2708 (360)

Table 4.2: Average error in response position after collision over all encountered collisions, as computed by
ep = 1

k

∑k
t=1

1
2 (‖p′

1 − q′
1‖ + ‖p′

2 − q′
2‖), where q′

i are the post-collision positions as computed by the explicit
model in (4.3), p′

i are the post-collision positions computed from the neural network, and k is the total number
of collisions occurred (shown beside each error).

From the tables above, it is evident that the error in position stabilizes for each given neural
network given a big enough training set (larger than 324). Furthermore the error decreases with an
increase in the number of units. Furthermore notice that increasing the number of units (over 20)
in the first layer fails to improve accuracy, however if the units are distributed along two layers, the
accuracy is improved when the total number of units increases.

The algorithm used by Matlab to train the neural networks is Levenberg-Marquardt backpropa-
gation, which stops when the network seizes to change.

I have include the times it took for each neural network to attain its best accuracy for completeness.
However, tells us little about the relationship between number of units and training time because each
network was trained only once. To obtain a better estimate on this relationship multiple trials must
be performed, the average of which may provide some information.

7

of units size of training set
Layer 1 Layer 2 76 324 672

5 5 16.94 63.45 70.29
10 5 9.544 176.54 68.78
10 10 8.850 61.33 16.06
20 15 23.84 117.2 697.6

5 0 1.824 6.206 10.84
10 0 6.430 46.09 85.95
20 0 3.381 101.4 129.8
25 0 - 53.66 84.84
35 0 - 41.76 120.8

Table 4.3: CPU time spent training each neural network in seconds.

4.4 Generated Output

Each of the artificial neural networks in the results produced a video of the simulation using ffmpeg

to combine frames into an .mpeg file. The number of frames simulated varies.

imvnetsmall[num neurons] [frames trained].mpg: All video files of simulated artificial neural net-
works used, where num neurons is the number of units used in each layer (e.g. 5-5) and
frames trained is the number of frames of the physical simulation used to train each neural
network (1000, 5000 or 10000).

imvnetcolor[num neurons] [frames trained].mpg: Video files of neural network simulations per-
formed on a 512×512 grid, with 20 particles. Parameters are as above.

imphy.mpg: A 2D particle simulation on a 512×512 grid and 20 particles using the physical collision
function in (4.1), (4.2), and (4.3).

imphysmall.mpg: A 2D particle simulation on a 256×256 grid and 5 particles using the physical
collision function in (4.1), (4.2), and (4.3). This video was create with the following commands

1 >> sp(256,20,5,8,2000,3,@bbcollision);

2 >> system('ffmpeg -r 40 -f image2 -i "imv-%05d.png" -b 64k -y "imphy.mpg"');

ploterrpsm[num neurons] [frames trained].pdf: Plots giving the errors as computed in Tables 4.2
and 4.1 of respective errors at each collision. The parameters are as above.

5 Conclusions

Research in machine learning techniques applied to computer graphics and specifically physically-
based animation is extensive, however each method has its strengths and weaknesses. Artificial neural
network are exceptionally powerful and widely applicable for low dimensional problems. Designing the
most effective networks, however, has proven to be a challenge. In particular, it is not always clear how
many units to use in each layer of a feed-forward neural network. Furthermore, the target system being
approximated must be smooth, as otherwise neural networks will not produce the correct results. This
is precisely the reason why I chose to use the collision function in the 2D particle simulator, because
the velocity and position functions are discontinuous as functions of time. They are, however, smooth
as functions of initial positions and velocities at a collision.

8

References

[1] J. Dinerstein, P. K. Egbert, and D. Cline. Enhancing computer graphics through machine
learning: a survey. The Visual Computer, 23(1), pp. 25–43 (2007). ISSN 0178-2789. doi:
10.1007/s00371-006-0085-4.

[2] R. Grzeszczuk, D. Terzopoulos, and G. Hinton. Neuroanimator: fast neural network emulation
and control of physics-based models. In Proceedings of the 25th annual conference on Computer
graphics and interactive techniques, SIGGRAPH ’98, pp. 9–20. ACM, New York, NY, USA (1998).
ISBN 0-89791-999-8. doi:10.1145/280814.280816.

[3] Gallant. Nonlinear regression. The American Statistician, 29(2), pp. 73–81 (1975). doi:10.1080/
00031305.1975.10477374.

[4] H. Theil. A rank-invariant method of linear and polynomial regression analysis. In B. Raj and
J. Koerts, eds., Henri Theils Contributions to Economics and Econometrics, vol. 23 of Advanced
Studies in Theoretical and Applied Econometrics, pp. 345–381. Springer Netherlands (1992). ISBN
978-94-010-5124-8. doi:10.1007/978-94-011-2546-8 20.

[5] K. V. Mardia, J. Kent, and J. Bibby. Multivariate analysis (probability and mathematical statis-
tics) (1980).

[6] S. J. Russell, P. Norvig, J. F. Canny, J. M. Malik, and D. D. Edwards. Artificial intelligence: a
modern approach, vol. 74. Prentice hall Englewood Cliffs (1995).

[7] V. A. Zorich. Mathematical analysis II, vol. 2. Springer (2004).

[8] T.-Q. Guo, J.-J. Li, J.-G. Weng, and Y. ting Zhuang. Filling holes in complex surfaces using
oriented voxel diffusion. In Machine Learning and Cybernetics, 2006 International Conference
on, pp. 4370–4375 (2006). doi:10.1109/ICMLC.2006.259087.

[9] I. Jolliffe. Principal component analysis. Wiley Online Library (2005).

[10] E. D. Sontag. Feedforward nets for interpolation and classification. Journal of Computer and
System Sciences, 45(1), pp. 20–48 (1992).

[11] D. L. Chester. Why two hidden layers are better than one. In Proceedings of the international
joint conference on neural networks, vol. 1, pp. 265–268 (1990).

9

A Matlab code

The following code is written entirely by me. The following Matlab functions create and train the
2D particle collision simulator on a number of different neural networks.

A.1 Primary functionality

Explicit physical ball-to-ball collision function implementing equations (4.1), (4.2) and (4.3).

1 function [pos vel bitn] = bbcollision(p1, p2, v1, v2, r)

2 % compute a collision reaction between two particles at positions p1

3 % and p2, with velocities v1 and v2 respectively

4 vel = zeros(2,1);

5 pos = zeros(2,1);

6
7 n = p2 - p1;

8 d = norm(n);

9 n = n/d;

10 vr = v2 - v1;

11 vr_dot_n = dot(vr, n)*n;

12 vel(:,1) = v1 + vr_dot_n;

13 vel(:,2) = v2 - vr_dot_n;

14
15 % separate the balls so they don't get stuck together

16 bit = r - 0.5*d;

17 bitn = floor(bit)*n;

18 pos(:,2) = round(p2 + bitn);

19 pos(:,1) = round(p1 - bitn);

Explicit physical ball-to-wall collision function.

1 function [pn v] = wbcollisions(pn, v, N, r)

2 % determine if a particle in pn collides with the wall, if so, adjust its

3 % velocity in v, and adjust its displacement as to not go through the wall

4
5 len = length(pn);

6 for i = 1:len % check for wall collisions

7 if (pn(1,i) > N - r) || (pn(1,i) < r) % right or left wall collision

8 v(1,i) = -v(1,i); % mirror velocity vector

9
10 % adjust positions to avoid particles visually passing the boundary

11 if pn(1,i) > N - r

12 pn(1,i) = N - r;

13 end

14 if pn(1,i) < r

15 pn(1,i) = r;

16 end

17 end % if x coordinate not ok

18
19 if (pn(2,i) > N - r) || (pn(2,i) < r) % bottom or top wall collision

20 v(2,i) = -v(2,i); % mirror velocity vector

21
22 % adjust positions to avoid particles visually passing the boundary

23 if pn(2,i) > N - r

24 pn(2,i) = N - r;

25 end

26 if pn(2,i) < r

10

27 pn(2,i) = r;

28 end

29 end % if y coordinate not ok

30 end

Function to perform the main simulation based on the given collision function.

1 function [errp, errv] = sp(N,r,M,maxv,frames,seed,bbcol)

2 % 2D particle simulator

3 % N -> resolution

4 % r -> radius of each particle in pixels

5 % M -> number of particles

6 % maxv -> maximum velocity (displacement per frame) in each direction

7 % frames -> number of frames to simulate

8 % seed -> a random seed used to produce random colors and initial conditions

9 % bbcol -> the collision response function used to resolve collisions

10 rand('seed', seed);

11
12 % generate a few particles

13 p = genparticles(N,r,M,maxv);

14
15 % generate a random color for each particle

16 c = gencolors(M);

17 f = fillcolorpoints(p, r, N);

18 I = fillcolorimage(f, N, c);

19
20 % assign random initial velocity vectors:

21 v = 2.0*maxv*(rand(size(p)) - 0.5);

22
23 imwrite(I, 'img/imv-00000.png'); % write initial image

24
25 % animate

26 pn = p;

27 len = length(pn);

28 collisions = 0;

29
30 % gather error information

31 errp = zeros(1, frames);

32 errv = zeros(1, frames);

33
34 tic;

35 for t = 1:frames

36 pn = round(pn + v);

37
38 % check if two particles intersect, if so change velocity

39 for i = 1:(len-1)

40 for j = (i+1):len

41 if norm(pn(:,i) - pn(:,j)) < r+r-2 % ball-ball collision detected

42 collisions = collisions + 1;

43
44 [pos vel] = bbcol(pn(:,i), pn(:,j), v(:,i), v(:,j), r);

45
46 % compute the error as compared to the actual physical simulator

47 [pos2 vel2] = bbcollision(pn(:,i), pn(:,j), v(:,i), v(:,j), r);

48 errp(collisions) = 0.5*(norm(pos(:,2) - pos2(:,2)) + norm(pos(:,1) - pos2(:,1)));

49 errv(collisions) = 0.5*(norm(vel(:,2) - vel2(:,2)) + norm(vel(:,1) - vel2(:,1)));

50
51 pn(:,i) = pos(:,1);

11

52 pn(:,j) = pos(:,2);

53 v(:,i) = vel(:,1);

54 v(:,j) = vel(:,2);

55
56 end % if ball-ball collision

57 end % for each particle j

58 end % for each particle i

59
60 [pn v] = wbcollisions(pn, v, N, r);

61
62 fn = fillcolorpoints(pn, r, N);

63 In = fillcolorimage(fn, N, c);

64 imwrite(In, sprintf('img/imv-%05d.png', t));

65 end

66 toc % display elapsed simulation time

67
68 errp(collisions+1:end) = [];

69 errv(collisions+1:end) = [];

70
71 collisions % display number of ball-ball collisions

Program used to simulate the explicit physical particle simulator to prepare the training set for neural
networks.

1 function [input, target] = genvinput(N,r,M,maxv,frames)

2 % 2D particle simulator that generates an input and target vectors to be used

3 % in a collision reaction learning algorithm

4 % N -> resolution

5 % r -> radius of each particle in pixels

6 % M -> number of particles

7 % maxv -> maximum velocity (displacement per frame) in each direction

8 % frames -> number of frames to simulate

9 rand('seed', 1);

10
11 p = genparticles(N,r,M,maxv);

12
13 % assign random velocity vectors:

14 v = 2.0*maxv*(rand(size(p)) - 0.5);

15
16 % prepare for frame loop

17 pn = p;

18 len = length(pn);

19 collisions = 0;

20
21 % allocate space for output vectors

22 input = zeros(6, frames);

23 target = zeros(6, frames);

24
25 for t = 1:frames

26 pn = round(pn + v); % update positions according to current velocity

27
28 % check if two particles intersect, if so change velocity

29 for i = 1:(len-1)

30 for j = (i+1):len

31 if norm(pn(:,i) - pn(:,j)) < r+r-2 % ball-ball collision detected

32 collisions = collisions + 1; % count number of collisions

33
34 rel = pn(:,j) - pn(:,i); % relative posn of j (from i)

12

35 input(:,collisions) = [rel; v(:,i); v(:,j)]; % phase before the collision

36
37 % compute ball-ball collisions

38 [pos vel bitn] = bbcollision(pn(:,i), pn(:,j), v(:,i), v(:,j),r);

39 pn(:,i) = pos(:,1);

40 pn(:,j) = pos(:,2);

41 v(:,i) = vel(:,1);

42 v(:,j) = vel(:,2);

43
44 target(:,collisions) = [bitn; v(:,i); v(:,j)]; % phase after collision

45 end % if ball-ball collision detected

46 end % for each ball

47 end % for each ball

48
49 [pn v] = wbcollisions(pn, v, N, r); % compute all wall-ball collisions

50 end

51
52 % clean trailing zeros

53 input(:,collisions+1:end) = [];

54 target(:,collisions+1:end) = [];

55
56 collisions % display the number of collisions

A script used to train a feed-forward network using the Levenberg-Marquardt backpropagation method.

1 function net = prepnet(numneurons, x, y)

2 % prepare network for simulation

3 % (essentially train network with numneurons hidden nodes)

4 net = feedforwardnet(numneurons');
5 net = configure(net, x, y);

6 net = train(net, x, y);

A wrapper for sp.m used to simulate a trained network.

1 function [errp, errv] = simvnet(N,r,M,maxv,frames,seed,net)

2 % 2D particle simulator using a learned collision function

3 % N -> resolution

4 % r -> radius of each particle in pixels

5 % M -> number of particles

6 % maxv -> maximum velocity (displacement per frame) in each direction

7 % seed -> a random seed used to produce random colors and initial conditions

8 % net -> learned collision function

9
10 bbcol = @(p1, p2, v1, v2, r) bbcolnet(p1,p2,v1,v2,net);

11 [errp errv] = sp(N,r,M,maxv,frames,seed,bbcol);

12
13 end % simvnet

14
15 function [pos vel] = bbcolnet(p1, p2, v1, v2, net)

16 % use the learned function for collision response

17 res = net([p2 - p1; v1; v2]);

18 bitn = res(1:2);

19 vel = reshape(res(3:6), 2, 2);

20 pos(:,2) = round(p2 + bitn);

21 pos(:,1) = round(p1 - bitn);

22 end % bbcolnet

13

Program that generates the training set, trains a network and simulates the 2D particle collision
simulator.

1 function [net, errp, errv] = svn(N,r,M,maxv,ftrain,fsim,numneurons)

2 % Program that trains a neural network the impulse reaction function in

3 % a 2D particle collision simulator, and then simulates fsim frames

4 % of colliding particles using this neural network generatively.

5 % in addition this program will create a plot of the error in velocity and

6 % position after the collision, and display error means

7 % INPUTS:

8 % N -> resolution

9 % r -> radius of each particle in pixels

10 % M -> number of particles

11 % maxv -> maximum velocity (displacement per frame) in each direction

12 % ftrain -> number of frames to train the neural network with

13 % fsim -> number of frames to simulate on output

14 % numneurons -> number of neurons in each layer to use on the network

15 % OUTPUTS:

16 % net -> the trained nural network

17 % errp -> the error in position at each collision

18 % errv -> the error in velocity at each collision

19
20 disp('Generating input...');
21 [x y] = genvinput(N,r,M,maxv,ftrain);

22 disp('Training neural network...');
23 net = prepnet(numneurons, x, y);

24 disp('Simulating...');
25 [errp, errv] = simvnet(N,r,M,maxv,fsim,3,net);

26 ploterr(errp, errv, numneurons, ftrain);

27 fprintf('velocity error mean = %f\n', mean(errv));

28 fprintf('position error mean = %f\n', mean(errp));

A.2 Supporting functionality

The script run to generate Tables 4.1, 4.2 and 4.3. This script shows how to run the above primary
functions. In order to run this script, the caller must have created a subdirectory /img/ and have
access to the program ffmpeg in order to generate .mpeg videos of the simulations.

1 % Driver script used to generate al

2 N = 256; % resolution

3 r = 20; % particle radius

4 M = 5; % number of particles

5 maxv = 8; % maximum velocity of generated particles

6 fsim = 5000; % number of frames to use in simulation

7 for numneurons = [5 5 10 20 5 10 20 25 35; 5 10 10 15 0 0 0 0 0]

8 numneurons

9 for ftrain = [1000 5000 10000] % generates 76, 324 and 672 collisions resp.

10 ftrain

11 [net, errp, errv] = svn(N,r,M,maxv,ftrain,fsim,numneurons);

12 disp('Converting frames to an mpeg...');
13 nn = [num2str(numneurons(1)) '-' num2str(numneurons(2))];

14 system(['ffmpeg -r 40 -f image2 -i "img/imv-%05d.png" -b 64k -y "img/imvnetsmall' ...

15 nn '_' num2str(ftrain) '.mpg"']);
16 end

17 end

14

A supporting program that finds the points within r of the centres of given particles.

1 function f = fillcolorpoints(p, r, N)

2 % given a set of coordinates in p, generate the coordinates in the image that

3 % should be filled around each point accorinding to the radius r

4
5 n = size(p, 2);

6 f = zeros(2,n,ceil(pi*(r+1)*(r+1)));

7 f(:,:,1) = p;

8 for pt = 1:n

9 count = 2;

10 for i = 0:r

11 for j = 0:r

12 if i == 0 && j == 0

13 continue;

14 elseif i*i + j*j < r*r

15 if p(1,pt) + j ≤N

16 if p(2,pt) + i ≤N

17 f(:,pt,count) = [p(1,pt) + j; p(2,pt) + i];

18 count = count + 1;

19 end

20 if p(2,pt) - i > 0

21 f(:,pt,count) = [p(1,pt) + j; p(2,pt) - i];

22 count = count + 1;

23 end

24 end

25 if p(1,pt) - j > 0

26 if p(2,pt) + i ≤N

27 f(:,pt,count) = [p(1,pt) - j; p(2,pt) + i];

28 count = count + 1;

29 end

30 if p(2,pt) - i > 0

31 f(:,pt,count) = [p(1,pt) - j; p(2,pt) - i];

32 count = count + 1;

33 end

34 end

35 end

36 end

37 end

38 end

39
40 f(:,:,count:end) = [];

A supporting program that creates an RGB image of the simulated particles.

1 function I = fillcolorimage(f, N, color)

2 % given a set of coordinates f, assign a color to these coordinates in an

3 % NxN color image

4
5 Ir = zeros(N);

6 Ig = zeros(N);

7 Ib = zeros(N);

8 idx = squeeze(f(1,:,:) + N*(f(2,:,:) - 1)); % index into I

9 M = size(idx, 1);

10 for i = 1:M

11 Ir(idx(i,:)) = color(1,i);

15

12 Ig(idx(i,:)) = color(2,i);

13 Ib(idx(i,:)) = color(3,i);

14 end

15
16 % consolidate all channels into one

17 I(:,:,1) = Ir;

18 I(:,:,2) = Ig;

19 I(:,:,3) = Ib;

20
21 % add a white border to better see where particles collide

22 I(1,:,:) = 1;

23 I(:,1,:) = 1;

24 I(N,:,:) = 1;

25 I(:,N,:) = 1;

A program that generates the error plots for velocity and position.

1 function ploterr(errp, errv, numneurons, ftrain)

2 % program to save a plot of position and velocity errors

3
4 fig = figure();

5 ah = axes();

6 hold on

7 plot(ah, 1:length(errp), errp);

8 xlabel(ah, 'Collision');
9 ylabel(ah, 'Error in position');

10 title(ah, 'Error in Position after each collision');
11 set(findall(fig,'type','text'),'fontSize',13,'fontWeight','bold');
12 set(fig, 'PaperSize', [10.0 5.0]);

13 set(fig, 'PaperPosition', [0 5 10 5]);

14 set(fig, 'PaperOrientation', 'landscape');
15 nn = '';
16 for i = numneurons'
17 nn = [nn '-' num2str(i)];

18 end

19 saveas(ah, ['ploterrpsm' nn '_' num2str(ftrain)], 'pdf');
20 hold off

21 clf

22
23 fig = figure();

24 ah = axes();

25 hold on

26 plot(ah, 1:length(errv), errv);

27 xlabel(ah, 'Collision');
28 ylabel(ah, 'Error in velocity');
29 title(ah, 'Error in Velocity after each collision');
30 set(findall(fig,'type','text'),'fontSize',13,'fontWeight','bold');
31 set(fig, 'PaperSize', [10.0 5.0]);

32 set(fig, 'PaperPosition', [0 5 10 5]);

33 set(fig, 'PaperOrientation', 'landscape');
34 nn = '';
35 for i = numneurons'
36 nn = [nn '-' num2str(i)];

37 end

38 saveas(ah, ['ploterrvsm' nn '_' num2str(ftrain)], 'pdf');
39 hold off

16

	Introduction
	Machine Learning
	Regression
	Function Approximation
	Manifold Learning

	Modelling Physical Systems for Animation
	A 2D Particle Collision Simulator
	Physical 2D Collision Model
	Feed-Forward Artificial Neural Network
	Results
	Generated Output

	Conclusions
	Matlab code
	Primary functionality
	Supporting functionality

